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Abstract. The exact solution to the problem of reflection and diffraction of atomic de Broglie
waves by a travelling evanescent wave is found starting with a bare-state formulation. The
solution for the wavefunctions, the tunnelling losses and the non-adiabatic losses are given
exactly in terms of hyper-Bessel functions, and are valid for all detuning and Rabi frequencies,
thus generalizing previous approximate methods. Furthermore, we give the limiting cases of
the amplitudes in the uniform semiclassical limit, which is valid in all regions including near
the classical turning points, and in the large and weak coupling cases. Exact results for the
zero detuning case are obtained in terms of Bessel functions. We find our uniform semiclassical
limit to be closer to the exact result over the full range of parameter values than the previously
reported calculations.

1. Introduction

Several theoretical analyses of the reflection and diffraction of atomic de Broglie waves
by laser radiation have been made by Cook and Hill (1982), Hajnal and Opat (1989),
Deutschmannet al (1993a, b) and Wallis (1995) following the interest in forming atomic
mirrors and gratings from laser waves. In the model considered here a laser beam
propagating inside a quartz block is totally internally reflected at the quartz-vacuum interface,
thus producing a travelling evanescent wave on the vacuum side of the interface. Incident on
the interface from the vacuum side is a beam of atoms, which is taken to be a two-level atom
whose level spacing is near the laser frequency. See figure 1 of Hajnal and Opat (1989)
for the geometry of the problem and the conventions for coordinates. In this case there
will be a single-reflected and a single-diffracted beam. Another more commonly explored
configuration is where the laser beam, after total internal reflection, is retro-reflected, and so
one has two counter-propagating beams. In this case the evanescent wave is a standing wave
and an infinite number of higher-order diffracted atomic beams arise. We do not consider
this more complicated case here. In the bare-state picture (see Hajnal and Opat 1989)
a Green function formulation was approximately solved numerically using a perturbative
Born series approach, even though the dimensionless coupling parameter in practical cases
is very large (∼104). In the dressed-state picture Deutschmannet al (1993a, b) employed a
semiclassical WKB solution, without any reliable or controllable error estimates, although
in some physical situations these results may have relevance. We present the exact solution
to this problem and also seek to reconcile all these different treatments by investigating
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the physically significant limiting cases to the exact solution that have been the basis of
the approximate schemes employed above. We do not, however, discuss the limitations
of this model, in particular the assumptions made in deriving it, such as the two-state
approximation, or the absence of spontaneous decay, etc.

The differential equations describing this model have also arisen in other fields where
their exact solutions have been found. Because the models are physically different and
consequently the boundary conditions are different, these results cannot be translated into
ours. Also the approach taken here is quite different and is intended to be as complete
as possible. The earliest application arose in the investigation of the lateral vibrations
of bars whose cross section is a function of the distance from one end. In this context
asymptotic expressions for these solutions when the argument becomes large were first
detailed in Wrinch (1921a, b). Another early application was found in the oblique reflection
of long wavelength radio waves from a reflecting region of the ionosphere where the earth’s
magnetic field was vertical and the wave frequency was much less than the gyro-frequency.
The exact solution of the differential equations under these circumstances was found
to be the generalized hypergeometric function, or specifically the hyper-Bessel function
0F3(; ρ; z), and leading-order asymptotic forms asz → ∞ were found using the Mellin–
Barnes integral representations of these functions. These were identical to those found
earlier by Wrinch (1921a). More recently this type of differential equation has arisen in a
wide range of problems ranging from charge transfer in atomic collisions to vibrational
transitions in molecular scattering, in particular the Demkov–Rosen–Zener models. In
Osherov and Voronin (1994) and Zhu (1996) coupled Schrödinger equations with model
potentials resulting from separating out angular variables and truncating the basis were
solved by comparing the differential equations with the defining differential equations of
the MeijerG-function, which in these cases reduces to that of the hyper-Bessel function.
From the known asymptotic (see Luke 1975) forms asz→ 0,∞ the non-adiabatic transition
matrices for 1, 2 or 3 open channel cases could be found exactly in terms of the gamma and
elementary functions. The interest in an exact expression is that it provides a description of
collision processes where the energy transfer is small and which occur at large separations,
whereas the traditional treatment elaborated in the works of Landau, Zener and Stueckelberg
only describes non-adiabatic transitions near avoided crossings and where the energy transfer
is large.

Our results require some considerable technical work, of a purely mathematical nature,
and in order to make the essential physical answers accessible we have divided the paper into
two parts. The first part contains the physical results, without any derivation, and the second
part, the majority of the paper, provides the mathematical justification and explanation. In
the first part, section 2 describes the mathematical formulation of the problem and relates
our parameters to the key physical quantities. In section 3 we give the exact solution to
this model in terms of a class of generalized hypergeometric functions, the hyper-Bessel
functions. Here we give expressions for the wavefields, tunnelling losses and non-adiabatic
losses for arbitrary parameters. Immediately following that, in section 4, we give the simple
limiting forms in the cases of weak coupling, strong coupling and zero detuning. We also
give the uniform semiclassical approximation which is valid in the region of the classical
turning point, or regardless of the proximity of this point to any boundary. We sometimes
only offer one expression as an example of how one might obtain the others, and all the
expressions are available in Witte (1996). In the second part of the paper, we begin by
deriving the solution in section 5. In section 6 we report a number of old results which
are required in order to prove some identities arising in the physical model and also to
facilitate computation of these functions. In the final section, section 7, we derive the
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uniform semiclassical approximation for the particular type of hyper-Bessel function that
arises in this work. A preliminary report of some of the results given here has already
appeared in Fenget al (1996).

2. Formulation of the model

According to Hajnal and Opat (1989), the Schrödinger equation for the wavefunctions
of the different diffraction orders leads to the pair of coupled second-order homogeneous
differential equations defined on the half-intervaly > 0(

d2

dy2
+ k2

0

)
φ0(y) = −�2e−qyφ1(y)(

d2

dy2
+ k2

1

)
φ1(y) = −�2e−qyφ0(y)

(1)

whereφ0 is the reflected or ground state (channel 0) andφ1 the diffracted or excited state
(channel 1) atomic wavefunctions. In addition, the following parameters appear,

k2
0 = k2

y k2
1 = k2

y − 2kxQx −Q2
x +

2m

h̄
(ω − ωa) �2 = 2mµE0

h̄2 (2)

whereh̄(kx,−ky) are the atomic momentum components,m is the atomic mass,µ is the
static electric dipole moment of the atom,ωa is the atomic level spacing,ω is the laser
frequency,q is the inverse decay length of the evanescent wave,Qx is thex-component of
the laser wavenumber, andE0 is the electric field amplitude of the laser beam. In all that
follows we takek0, k1, q and�2 to be real and positive.

Before proceeding any further we scale our system variables to physically dimensionless
ones by forming ratios with evanescent scale length, and this will also simplify the
mathematical analysis,

x ≡ 2qy α0 ≡ k0/2q α1 ≡ k1/2q β ≡ �/2q ψ(x) ≡ 1

2q
φ(y). (3)

Thus it will be assumed thatq is non-zero, as the situation with a zero scale length is
trivial. Our new quantities are simply related to the dimensionless parameters defined in
Deutschmannet al (1993a) by the following

8β2 = �R

1q

4(α2
1 − α2

0) = 1 =
1eff

1q

4α2
0 =

T∞y
h̄1q

(4)

which are the dimensionless Rabi frequency, the dimensionless detuning parameter and the
dimensionless perpendicular kinetic energy respectively, referred to ¯h1q ≡ h̄2q2/2m. With
these definitions the defining equations (1) become(

d2

dx2
+ α2

0

)
ψ0(x) = −β2e−

1
2xψ1(x)(

d2

dx2
+ α2

1

)
ψ1(x) = −β2e−

1
2xψ0(x)

(5)

and the boundary conditions (8) are

ψ ′0(0)+ iα0ψ0(0) = 0 ψ ′1(0)+ iα1ψ1(0) = 0. (6)

Conventionally, we take an incoming or left-moving wave to be of the form e−iωt−iky

and an outgoing or right-moving wave e−iωt+iky , so that incoming and outgoing directions
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are referred to the origin. The boundary conditions at infinite distance from the interface
are

ψ0(x)→ 1 · e−iα0x + R0e+iα0x ψ1(x)→ 0 · e−iα1x + R1e+iα1x (7)

which represent a unit incoming atomic wave in channel 0 and its outgoing reflection with
amplitudeR0, and and outgoing wave in channel 1 with amplitudeR1. The amplitudeR1

represents the non-adiabatic losses from the atomic beam. At the interface, asx → 0−, the
boundary conditions are

ψ0(0
−)→ T0e−iα0x + 0 · e+iα0x ψ1(0

−)→ T1e−iα1x + 0 · e+iα1x (8)

which represent transmitted left-moving waves with amplitudesT0 andT1. In other words,
once an atom crosses the interface it is assumed to enter a non-interaction region and can
never be reflected back across the interface, to be lost from the system. Both the amplitudes
T0 andT1 represent tunnelling losses across the interface.

Utilizing the boundary conditions (6) one can express the solution for the wavefields in
terms of the field values at the originψ0(0) ≡ ψ0, ψ1(0) ≡ ψ1. If we write the asymptotic
behaviour in the following way

ψ0(x)→ e+iα0x(ψ0S
+
00+ ψ1S

+
01)+ e−iα0x(ψ0S

−
00+ ψ1S

−
01)

ψ1(x)→ e+iα1x(ψ0S
+
10+ ψ1S

+
11)+ e−iα1x(ψ0S

−
10+ ψ1S

−
11)

(9)

in terms of dimensionless amplitudesS. We can then completely solve our system by
specifying the boundary conditions at infinity

ψ0S
+
00+ ψ1S

+
01 = R0 ψ0S

+
10+ ψ1S

+
11 = R1

ψ0S
−
00+ ψ1S

−
01 = 1 ψ0S

−
10+ ψ1S

−
11 = 0

(10)

where we have after solving forψ0 andψ1

R0 = S+00S
−
11− S+01S

−
10

S−00S
−
11− S−01S

−
10

R1 = S+10S
−
11− S+11S

−
10

S−00S
−
11− S−01S

−
10

T0 = S−11

S−00S
−
11− S−01S

−
10

T1 = −S−10

S−00S
−
11− S−01S

−
10

.

(11)

While the above boundary conditions are appropriate in realistic situations it is
advantageous to generalize them in a symmetrical way, by including arbitrary weights
into the incoming channels. We let, asx →∞

ψ0(x)→ a0e+iα0x + b0e−iα0x ψ1(x)→ a1e+iα1x + b1e−iα1x (12)

and asx → 0−

ψ0(x)→ t0e−iα0x ψ1(x)→ t1e−iα1x (13)

and define two transition matrices, a non-adiabatic transition matrix,UL−1, and a tunnelling
loss matrixL−1 via(

a0

a1

)
= U · L−1

(
b0

b1

) (
t0
t1

)
= L−1

(
b0

b1

)
(14)

where theU, L matrices are then

U, L =
(
S±00 S±01
S±10 S±11

)
. (15)
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In this way we can find a normalization condition and this is done by noting that the
following flux is a constant

J = dψ0

dx
ψ∗0 − ψ0

dψ∗0
dx
+ dψ1

dx
ψ∗1 − ψ1

dψ∗1
dx

(16)

and that by equating the limiting forms of this asx →∞ andx → 0− we find the condition

α0(|a0|2+ |t0|2)+ α1(|a1|2+ |t1|2) = α0|b0|2+ α1|b1|2. (17)

This in turn implies a condition on theS-functions given that all outgoing amplitudes are
solved in terms of arbitrary incoming ones

α0 = α0[|S−00|2− |S+00|2] + α1[|S−10|2− |S+10|2]

α1 = α1[|S−11|2− |S+11|2] + α0[|S−01|2− |S+01|2]

0= α0[S−∗00 S
−
01− S+∗00 S

+
01] + α1[S−∗10 S

−
11− S+∗10 S

+
11].

(18)

Normally we will only exhibitR0, R1 and T0, T1, the only non-zero elements of the
non-adiabatic and tunnelling loss matrices appropriate to the usual boundary conditions,
and as the other elements can be easily found using the same techniques described below.

The above description constitutes one based on the bare-state or diabatic picture, and
one can also use the dressed-state or adiabatic picture as discussed in Compagnoet al (1982)
and Deutschmannet al (1993a, b) although in our case it yields no attendant simplification.
The two quasipotentials are then

W±(x) = − 1
2{α2

0 + α2
1 ± [(α2

1 − α2
0)

2+ 4β4e−x ]1/2} (19)

and the classical turning pointsx0 defined byW±(x0) = 0 are given byα2
0α

2
1 = β4e−x0.

Their definitionsW− andW+ are the upper and lower branches respectively. By defining
the dressed statesψ0,ψ1 corresponding to the quasipotentialsW−,W+ respectively we have
the following transformation relating the two pictures(

ψ0
ψ1

)
=
(

cos(2) sin(2)
− sin(2) cos(2)

)(
ψ0

ψ1

)
(20)

and where the rotation angle is given by

2 = 1

2
tan−1

(
2β2e−x/2

α2
1 − α2

0

)
1 > 0

= π

2
− 1

2
tan−1

(
2β2e−x/2

α2
0 − α2

1

)
1 < 0

(21)

so that when1 > 0 then2 → 0 as x → ∞, i.e. the upper branch approaches the
ground state, and the lower branch the excited state, while in the opposite case1 < 0 then
2→ π/2, and the associations are reversed compared with the previous case. As1→ 0
then2→ π/4.

3. Exact solution

We give the exact solution for the wavefields here, and the derivation from first principles
can be found in section 5. For the wavefieldψ0(x) we have

iπ−3 coshπδ coshπσ ψ0(x) = e−iα0x

sinh 2πα0
0f3(; 1+ 2iα0,

1
2 + iδ, 1

2 + iσ ;β4e−x)

×[+β2ψ1 · 0f3(; 1− 2iα0,
3
2 − iδ, 1

2 − iσ ;β4)
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−ψ0 · 0f3(;−2iα0,
1
2 − iδ, 1

2 − iσ ;β4)]

+ e+iα0x

sinh 2πα0
0f3(; 1− 2iα0,

1
2 − iδ, 1

2 − iσ ;β4e−x)

×[−β2ψ1 · 0f3(; 1+ 2iα0,
1
2 + iδ, 3

2 + iσ ;β4)

+β4ψ0 · 0f3(; 2+ 2iα0,
3
2 + iδ, 3

2 + iσ ;β4)]

+ e−
1
2x−iα1x

sinh 2πα1
0f3(; 1+ 2iα1,

3
2 − iδ, 3

2 + iσ ;β4e−x)

×[+β2ψ1 · 0f3(;−2iα1,
1
2 + iδ, 1

2 − iσ ;β4)

−β4ψ0 · 0f3(; 1− 2iα1,
3
2 + iδ, 1

2 − iσ ;β4)]

+ e−
1
2x+iα1x

sinh 2πα1
0f3(; 1− 2iα1,

3
2 + iδ, 3

2 − iσ ;β4e−x)

×[−β6ψ1 · 0f3(; 2+ 2iα1,
3
2 − iδ, 3

2 + iσ ;β4)

+β4ψ0 · 0f3(; 1+ 2iα1,
1
2 − iδ, 3

2 + iσ ;β4)] (22)

where δ ≡ α0 − α1, σ ≡ α0 + α1 and ψ0, ψ1 are the field values at the origin. The
corresponding solution forψ1(x) is simply given by the equation above with the interchange
0↔ 1. Here the generalized hypergeometric0f3 or hyper-Bessel function is defined by the
series definition, or its relation to the MeijerG-function by

0f3(; a, b, c; z) = 1

0[a, b, c]
0F3(; a, b, c; z) = G10

04

(
ze−iπ

∣∣∣∣ 0, 1− a 1− b 1− c
)
(23)

where the gamma function products are defined by equation (53).
As x → ∞ the wavefunctions, as given in equation (22), evolve to purely undamped

travelling wavesolutions as they must. From the above solution theS-amplitudes are given
by

S+00(α0, α1, β) = β40[+2iα0,
1
2 + iδ, 1

2 + iσ ]0f3(; 2+ 2iα0,
3
2 + iδ, 3

2 + iσ ;β4)

S+01(α0, α1, β) = −β20[+2iα0,
1
2 + iδ, 1

2 + iσ ]0f3(; 1+ 2iα0,
1
2 + iδ, 3

2 + iσ ;β4)

S−00(α0, α1, β) = 0[−2iα0,
1
2 − iδ, 1

2 − iσ ]0f3(;−2iα0,
1
2 − iδ, 1

2 − iσ ;β4)

S−01(α0, α1, β) = −β20[−2iα0,
1
2 − iδ, 1

2 − iσ ]0f3(; 1− 2iα0,
3
2 − iδ, 1

2 − iσ ;β4)

S+10(α0, α1, β) = S+01(α1, α0, β)

S+11(α0, α1, β) = S+00(α1, α0, β)

S−10(α0, α1, β) = S−01(α1, α0, β)

S−11(α0, α1, β) = S−00(α1, α0, β).

(24)

As a check the previous sections analysis was repeated for the time reversed case, that is
to say e−iωt → e+iωt so that incoming and outgoing beams are interchanged, and the final
results for theset S-amplitudes was

t S+00(α0, α1, β) = S−00(−α0,−α1, β)
tS+01(α0, α1, β) = S−01(−α0,−α1, β)
tS−01(α0, α1, β) = S+01(−α0,−α1, β)
tS−00(α0, α1, β) = S+00(−α0,−α1, β)

(25)
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as would be expected. Finally we should note that the normalization conditions, given in
equations (17) and (18), imply a number of identities for our particular combination of
hyper-Bessel functions.

4. Special cases

There are a number of limiting cases that can be found from our exact solution, which lead
to simpler expressions and which would make contact with the results using approximate
methods that are appropriate to the particular regime. These cases are weak and strong
coupling, the zero detuning and the semiclassical regimes.

4.1. Weak coupling

When the laser field is weak, as reflected in a small value of the parameterβ then one can
simply take the series representation of the hyper-Bessel functions (see equation (23)) and
truncate it at some order. Here we display the results for the lowest few non-trivial orders,

R0 = 2

(+2iα0)(+2iα1)(1+ 2iα0)(
1
2 + iδ)

β4+O(β8)

R1 = − 1

(+2iα1)(
1
2 + iσ)

β2+O(β6)

T0 = 1+ (+2iα1)(
1
2 + iδ)+ 1

2 − iσ

(+2iα0)(+2iα1)(
1
4 + δ2)( 1

2 − iσ)
β4+O(β8)

T1 = − 1

(+2iα1)(
1
2 + iδ)

β2+O(β6).

(26)

These expressions also satisfy the normalization conditions, namely equation (17), to order
O(β8). From these results it is clear that in the case of no coupling the atomic beam is
completely transmitted, that in the next lowest order of weak coupling a diffracted (R1) and
transmitted beam (T1) emerges (orderβ2), and at the following order one gets a reflected
beam (R0) and a reduction in the transmission (T0) of the incident beam (orderβ4). Also
it can be observed that the coefficients behave as expected with respect to the detuning1,
for example|T0| increases to unity as1 increases from zero.

4.2. Large coupling

At the other extreme from the preceding section, we now look at large couplingβ � 1
while all other parametersα0, α1 remain O(1), and in order to do this we appeal to the
asymptotic properties of the hyper-Bessel function. The series definition of the hyper-Bessel
function has an infinite radius of convergence, and so is valid for large coupling, but it is
completely impractical and even misleading to evaluate it in this regime using the series
form. The nature of the asymptotic behaviour of the0f3 for a large real positive argument
is discussed in some depth in section 6, and the leading-order consists of a sum of an
exponential growth term and a subdominant oscillatory component, equation (65),

0f3(; a, b, c; z) ∼ zθ/4

2(2π)3/2

{
e4z1/4 + 2 cos

[
4z1/4+ π

2
θ
]}

(27)

where θ ≡ 3
2 − a − b − c. There is a fourth component, not displayed here, which is

exponentially small. One very important consequence of the form of our reflection and
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transmission coefficients and the exact properties of the hyper-Bessel function is that all
products of two dominant exponential terms occuring in the numerators and denominators
of R0 and R1 (and the denominators ofT0 and T1 too) given in equation (11) cancel.
Thus, we require the full subdominant oscillatory components of the asymptotic expansion.
This cancellation is be proven using the results in section 6, namely using equations (61)–
(64). Furthermore the resulting leading-order term in the numerator or denominator of a
coefficient is a product of a dominant exponential and a subdominant oscillatory factor and
this common exponential factor disappears when the ratio is taken.

Taken to the lowest order we have, after much cancellation and simplification for the
main beam

R0 ∼ β−8iα00

[+2iα0
1
2 + iδ 1

2 + iσ
−2iα0

1
2 − iδ 1

2 − iσ

]
1+ i tan(4β + π/4) tanhπδ

1− i tan(4β + π/4) tanhπσ
(28)

and using the reflection properties of the gamma function the modulus of this is

|R0| ∼
{

1+ tan2(4β + π/4) tanh2πδ

1+ tan2(4β + π/4) tanh2πσ

}1/2

. (29)

In a similar manner we have for the diffracted beam

R1 ∼ β−4iσ0

[+2iα1
1
2 + iσ

−2iα0
1
2 − iσ

]
i tan(4β + π/4) (tanhπσ − tanhπδ)

1− i tan(4β + π/4) tanhπσ
(30)

and the modulus of this is

|R1| ∼
(
α0

α1

)1/2

| tan(4β + π/4)|
{

tanh2πσ − tanh2πδ

1+ tan2(4β + π/4) tanh2πσ

}1/2

. (31)

For the transmission amplitudes we have

T0 ∼ (2π)3/2β−
1
2−4iα0 sechπδ

40[−2iα0,
1
2 − iδ, 1

2 − iσ ]

1

cos(4β + π/4) coshπσ − i sin(4β + π/4) sinhπσ
(32)

with T1 ∼ T0 so that the magnitude for both is

|T0| = |T1| ∼
(
α0

β
sinh 2πα0

coshπσ

coshπδ

)1/2

{cos2(4β + π/4)+ sinh2πσ }−1/2. (33)

The normalization conditions (17) are satisfied by these expansions of the coefficients to
order O(β−1). If one notes the variation of, say,|T0| in this regime as1 increases from
zero then this coefficient decreases exponentially which seems contrary to what one would
expect. However, the results of this regime can only be applied when1 � β2, and the
exact transmission coefficient for all detuning parameters actually shows that it decreases
initially with 1, then reverses and rises to approach unity as the detuning continues to
grow. Another point of observation, is that all the coefficients have a degree of oscillatory
behaviour with respect to the couplingβ, to the extent that the reflection coefficient of the
excited state beam can vanish when 4β + π/4 = nπ . To understand this, one can take
the zero detuning case in addition, as the effect arises most simply there, and one finds the
two dressed states then decouple into two Schrödinger equations with position-dependent
wavenumbers

k2
0(x) = β2(e−x0/2+ e−x/2) 06 x <∞
k2

1(x) = β2(e−x0/2− e−x/2) x0 6 x <∞.
(34)
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The relative phase shift of the outgoing dressed states, given that the incoming ones are in
phase with our choice of boundary conditions, is then given by the phase integrals∫ ∞

0
k0 dx −

∫ ∞
x0

k1 dx + π
4
−→
β→∞

4β + π
4
. (35)

4.3. Zero detuning

The particular case of zero detuning, in whichα1 → α0 ≡ α or 1 = 0, is particularly
interesting even though it lacks physical significance due to the maximal state mixing by
spontaneous emission in this regime. In the dressed state picture the two quasipotentials are
separated by ¯h1eff and so the situation with a positive value is physically distinct from that
in which it is negative. The parameterα0 or α now represents they-component of kinetic
energy of the incoming atomic beam.

Mathematically the simplification which arises in this case, taking the series
representation, is that one of the hypergeometric parameters becomes degenerate1

2± i[α0−
α1] → 1

2, and the four factorial factors coalesce into two by using the duplication formulae
for the gamma function. In this way the0f3 reduces to0f1, that is to say the standard
Bessel functions. It is found that the wavefunction becomes
i sinh 4πα

πβ
ψ0(x) = ψ0[−I4iα(4βe−x/4)I−1−4iα(4β)− J4iα(4βe−x/4)J−1−4iα(4β)

+I−4iα(4βe−x/4)I1+4iα(4β)− J−4iα(4βe−x/4)J1+4iα(4β)]

+ψ1[+I4iα(4βe−x/4)I−1−4iα(4β)− J4iα(4βe−x/4)J−1−4iα(4β)

−I−4iα(4βe−x/4)I1+4iα(4β)− J−4iα(4βe−x/4)J1+4iα(4β)] (36)

and theS-amplitudes are

S+00 = S+11 = (2β)1−4iα0(4iα) 1
2{I1+4iα(4β)− J1+4iα(4β)}

S+01 = S+10 = (2β)1−4iα0(4iα) 1
2{−I1+4iα(4β)− J1+4iα(4β)}

S−00 = S−11 = (2β)1+4iα0(−4iα) 1
2{I−1−4iα(4β)+ J−1−4iα(4β)}

S−01 = S−10 = (2β)1+4iα0(−4iα) 1
2{−I−1−4iα(4β)+ J−1−4iα(4β)}.

(37)

As remarked above for the asymptotic expansion in large couplings, an exact cancellation
of the exponentially dominant terms occurs in the cross products of theS-functions, and
this occurs here in the exact expressions. All the products of the modified Bessel functions
and of the products of theJ Bessel functions cancel exactly leaving products ofI andJ
Bessel functions. The reflection and transmission amplitudes are given by

R0 = (2β)−8iα0

[
4iα
−4iα

]
1

2

{
I1+4iα(4β)

I−1−4iα(4β)
− J1+4iα(4β)

J−1−4iα(4β)

}
R1 = −(2β)−8iα0

[
4iα
−4iα

]
1

2

{
I1+4iα(4β)

I−1−4iα(4β)
+ J1+4iα(4β)

J−1−4iα(4β)

}
T0 = (2β)−1−4iα

0(−4iα)

1

2

{
1

I−1−4iα(4β)
+ 1

J−1−4iα(4β)

}
T1 = (2β)−1−4iα

0(−4iα)

1

2

{
1

J−1−4iα(4β)
− 1

I−1−4iα(4β)

}
.

(38)

Several cross-checks of this result can be made with our earlier expressions. First the small
coupling limit β → 0 of equations (38) can be shown to lead to the same result as the



816 N S Witte

zero detuning limit of the small coupling case, as in section 4.1, equation (26). A similar
comparison of the large coupling limit of the above expressions with the zero detuning limit
of the large coupling case of section 4.2, equations (28), (30) and (32) also yield identical
results. Furthermore, the above coefficients can be shown to satisfy the normalization
condition (17) exactly by using the Wronskian and recurrence relations for theI , J Bessel
functions. Again oscillatory dependence of the coefficients on the couplingβ is evident
here as well, as can be seen from the occurrence of theJ Bessel functions.

We will need to consider some other limiting cases of the above expressions, so that
we can make connection with other approximate forms of the exact case. Specifically we
use the recent expansions for the Bessel functions given by Dunster (1990) and Temme
(1994) for a large real argument and large imaginary order. For theJ Bessel function the
full expansion is

J−iν(νz) ∼
(

2

πν

)1/2

(1+ z2)−1/4

{
cos

(
νξ − π/4+ 1

2
π iν

)∑
s=0

(−)s U2s(p)

ν2s

+ sin

(
νξ − π/4+ 1

2
π iν

)∑
s=0

(−)s U2s+1(p)

ν2s+1

}
(39)

with p = (1+ z2)−1/2 and

ξ = ln

(
z

1+√1+ z2

)
+
√

1+ z2 (40)

and which is valid when| arg(z)| < π/2, realν > 0. While the modifiedI Bessel function
has the expansion

I−iν(νz) ∼ eπν/2

2ν1/3

(
4ζ

1− z2

)1/4{
[Bi(−ν2/3ζ )+ 2ie−πν sinhπνAi(−ν2/3ζ )]

∑
s=0

(−)s As(ζ )
ν2s

+[Bi ′(−ν2/3ζ )+ 2ie−πν sinhπνAi ′(−ν2/3ζ )]
∑
s=0

(−)s Bs(ζ )
ν2s+4/3

}
(41)

with

2

3
ζ 3/2 = ln

(
1+√1− z2

z

)
−
√

1− z2 (42)

and the standard Airy functions Ai, Bi (the above is a corrected version of the result in
Dunster (1990)). This is valid when| arg(z)| < π andν > 0. The coefficientsU2s , U2s+1,
As, Bs are given in the above references but we require only the first members, which are
all unity. With these expressions it is easy to show that the Bessel functions appearing
in our coefficients have leading-order terms of the form, starting with the modified Bessel
function

(2πβ)1/2I−1−4iα(4β) ∼ e2πα−π i/4π1/2[sinε]−1/2

×[e−π i/12 cosε|βIm (h)|1/6Ai(e2π i/3|βIm (h)|2/3)
−e+π i/12 sinε|βIm (h)|−1/6Ai ′(e2π i/3|βIm (h)|2/3)] (43)

with the definitions cosε = α̂ ≡ α/β andβIm (h) = 6α tanε − 6αε. The corresponding
case for theJ Bessel function is

(2πβ)1/2J−1−4iα(4β) ∼ (α̂2+ 1)−1/4 cosh(iX − U − 2πα) (44)

with iX−U = 4iβ
√
α̂2+ 1− (1+4iα) ln(

√
α̂2+ 1+ α̂)+π i/4. The apparent arbitrariness

in our choice of notation in both these cases will be made clear when we come to discuss
the uniform semiclassical approximation in sections 4.4 and 7.
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4.4. Uniform semiclassical approximation

If one fixes the kinetic energy of the ground- and excited-state beams and the Rabi frequency,
while letting h̄ tend to zero we enter the semiclassical regime where in terms of our
dimensionless variablesα2

0, α
2
1, β

2 → ∞. In sections 6 and 7 we have developed such
an expansion for the0f3 functions whereby the ratioŝα0 ≡ α0/β, α̂1 ≡ α1/β are fixed that
is valid for all parameters regimes including in the region of the classical turning points. We
also use the ratioŝδ ≡ δ/β, σ̂ ≡ σ/β as parameters, any two of which are independent. The
intermediate result for the uniform semiclassical approximation of one of the transmission
coefficients, the tunnelling loss|T0|, is given in equations (102) and (103). Again we refer
the reader to Witte (1996) for results on the other coefficients. These formulae need to be
used in conjunction with the explicit roots to a quartic and all the derived quantities that are
described in the discussion following these equations. Using all of the analysis presented
in section 7 to carry out the process of assembling these pieces and making all possible
simplification we arrive at our final expression for|T0|. We give the most general result
for this coefficient, but with the only restriction thatα2

0α
2
1 < β4, so that we have a classical

turning point. The result is

|T0|2 ∼ 2M
α̂4

0 + sin4 χ

α̂2
0 sin2 χ

sinh 2πα0 coshπσ coshπδ

×|e−π i/4[tanε]−1/2[B(+)eW+iγ−2γα1 + B(−)e−W−iγ+2γα1]

+2α̂0M
−1/2e−πσ cosh(iX − V − 2πα1)|2

÷|e−π i/4[tanε]−1/2{cosh( 1
2V − 1

2U + 1
2iγ ) cosh(πδ + 1

2iγ )

×[B(+)eW−2γα1+iX− 1
2U−

1
2V−πσ + B(−)e−W+2γα1−iX+ 1

2U+
1
2V+πσ ]

+ cosh( 1
2V − 1

2U − 1
2iγ ) cosh(πδ − 1

2iγ )

×[B(+)eW−2γα1−iX+ 1
2U+

1
2V+πσ + B(−)e−W+2γα1+iX− 1

2U−
1
2V−πσ ]}

−α̂0M
−1/2e−πσ sinh(V − U) sinh(2πδ)|2 (45)

where in addition toχ defined by equation (87) the auxiliary variables take the following
definitionsε = π/2− χ , and

M ≡
√
α̂4

0 + sin2 χ e2U ≡ M + α̂2
0

M − α̂2
0

e2V ≡ M + α̂0α̂1

M − α̂0α̂1

X ≡ 4βM/α̂0+ π/4− 2Uα0− 2V α1 sinγ ≡ α̂0δ̂ tanε

W ≡ iε + 4α0 tanε − 2σε − 1
4π i.

(46)

In addition the Airy function phase terms,B(+),B(−) arising from the classical turning points
have the forms

B(+) = π1/2e−
2
3 |βIm (h)|+π i/2{e−π i/3[β|Im (h)|]1/6Ai(e2π i/3[β|Im (h)|]2/3)

+e+π i/3[β|Im (h)|]−1/6Ai ′(e2π i/3[β|Im (h)|]2/3)}
B(−) = π1/2e+

2
3 |βIm (h)|−π i/2{e+π i/6[β|Im (h)|]1/6Ai(e2π i/3[β|Im (h)|]2/3)

+e−π i/6[β|Im (h)|]−1/6Ai ′(e2π i/3[β|Im (h)|]2/3)}

(47)

where Im(h) is given by equation (101).
If one takes the limitα̂0, α̂1 → 0 of the above approximation to the transmission

coefficient then one recovers the large coupling expression given in equation (33). Using
equation (47) for the phase functions it is possible to show that the combinations of these
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functions appearing in the transmission coefficient approaches a weakly varying function
(of |Im (h)|) for large arguments as the individual phase functions approach unity (see
following equation (78)), while for small arguments they go over to constant values as the
divergent individual terms combine to cancel exactly. To see this it is necessary to note
that β|Im (h)| ∼ α0M

2ε3 as α̂2
0α̂

2
1 → 1 or ε → 0. There is another limit which yields a

check on our general result and that is the zero detuning case. It is possible to show that
this limit of equation (45) is identical to the limitα, β → ∞ of the zero detuning case,
namely equations (38), using the uniform asymptotic expansions of the Bessel functions as
given in equations (43) and (44).

The case where a classical turning point exists is also the only one treated in any detail
by Deutschmannet al (1993a) and their estimate of the tunnelling loss, when expressed in
our notation, is

|T0|2 ∼ e−2τ (48)

where the tunnelling depth isτ = 2
3βIm (h), using equation (101). This is just the WKB

expression for tunnelling through the adiabatic potential barrier and is not appropriate for
small detuning parameters or large couplings. Such factors are clearly present in our uniform
semiclassical result (see the phase factors in equation (47)), but the full result is clearly more
complex than this, and our result remains closer to the exact result over all parameter ranges
than equation (48), as one can see from figure 1. The oscillatory behaviour with coupling,
found in the large coupling and zero detuning cases, can also be found here, in its most
general form, through the phase angleX in equation (46). We do not exhibit the results for
the other amplitudesT1, R0, R1 but similar results for these could be easily found from the
analysis of section 7.

5. Solution method

There are many ways to proceed from the formulation of the model, as given in equations (5)
and (6), towards the exact solutions. One way applied many times before is to recast the
two coupled second-order differential equations into a single fourth-order one, transform
the independent variablez ≡ e−xβ4 and arrive at the following

[D + iα0][D − iα0][D − 1
2 + iα1][D − 1

2 − iα1]ψ0− zψ0 = 0 (49)

where D ≡ zd/dz = −d/dx. One can then immediately identify the solution with
the hypergeometric or MeijerG-functions and apply the boundary conditions. However,
we pursue a different approach of deriving the solution from first principles, which has
significant advantages that will become apparent later.

Given that our system is a homogeneous, the linear differential equation system defined
on the half-interval it is an obvious candidate for application of the Laplace transformation,

90,1(t) ≡
∫ ∞

0
e−xtψ0,1(x) dt (50)

valid for Re(t) > 0. Eliminating, say91, from the coupled difference equations results in
the following first-order inhomogeneous difference equation

[(t + 1
2)

2+ α2
1][ t2+ α2

0]90(t)− β490(t + 1)

= [(t + 1
2)

2+ α2
1][ψ ′0(0)+ tψ0(0)] − β2[ψ ′1(0)+ (t + 1

2)ψ1(0)] (51)

defined on the complext half-plane.
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Figure 1. A comparison of the uniform semiclassical approximation (USCA) to the transmission
coefficient T0 (see equation (45)) with the Deutschmannet al (1993a) WKB approximation
(DEW) (see equation (48)), versus the detuning parameter1. Both coefficients are normalized
with respect to the exact coefficient and the dimensionless parameter values areα0 = 2, β = 4.

Because this difference equation is only first order and has coefficients which are
polynomial in t it is immediately soluble. The homogeneous term in the solution must
be zero because of two considerations—first, the inversion integral must be convergent and
the homogeneous term contains a factor which is periodic int with real period 1, and
secondly because the inhomogeneous term is the only term which is a linear combination
of the four boundary values of the wavefunctionsψ0, ψ ′0, ψ1, andψ ′1. So the solution for
the inversion integrand is

90(t) =
∞∑
m=0

(
− β4m+2[ψ ′1(0)+ (t +m+ 1

2)ψ1(0)]

×0
[

t + iα0 t − iα0 t + 1
2 + iα1 t + 1

2 − iα1

t +m+ 1+ iα0 t +m+ 1− iα0 t +m+ 3
2 + iα1 t +m+ 3

2 − iα1

]
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+β4m[ψ ′0(0)+ (t +m)ψ0(0)]

×0
[

t + iα0 t − iα0 t + 1
2 + iα1 t + 1

2 − iα1

t +m+ 1+ iα0 t +m+ 1− iα0 t +m+ 1
2 + iα1 t +m+ 1

2 − iα1

])
(52)

where0 is the symbolic notation for the products of gamma functions

0

[(
a1 . . . ai . . . an
b1 . . . bj . . . bm

)]
=
∏n
i=10(ai)∏m
j=10(bj )

. (53)

Themth term of the integrand has the following finite sequences of simple poles to the
left of the contourt = −l ∓ iα0 for l = 0 . . . m and t = −l − 1

2 ∓ iα1 for l = 0 . . . m or
t = −l− 1

2∓ iα1 for l = 0 . . . m−1, and one can simply evaluate the integral by deforming
the contour to enclose these poles. If in addition one employs the boundary conditions
equations (6) one arrives at the following series representation for the solution

ψ0(x) =
∞∑
m=0

m∑
l=0

β4m (−)l
l!(m− l)!

×
{

e−lx−iα0x

(
−β2ψ1

(−l − 2iα0)m+1(−l + 1
2 − iδ)m+1(−l + 1

2 − iσ)m

+ ψ0

(−l − 2iα0)m(−l + 1
2 − iδ)m(−l + 1

2 − iσ)m

)

+e−lx+iα0x

(
−β2ψ1

(−l + 2iα0)m+1(−l + 1
2 + iδ)m(−l + 1

2 + iσ)m+1

+ (m− l)ψ0

(−l + 2iα0)m+1(−l + 1
2 + iδ)m(−l + 1

2 + iσ)m

)

+e−(l+
1
2 )x−iα1x

(
−β2ψ1

(−l − 2iα1)m(−l − 1
2 + iδ)m+1(−l − 1

2 − iσ)m+1

+ (m− l)ψ0

(−l − 2iα1)m(−l − 1
2 + iδ)m+1(−l − 1

2 − iσ)m

)

+e−(l+
1
2 )x+iα1x

(
−β2(m− l)ψ1

(−l + 2iα1)m+1(−l − 1
2 − iδ)m+1(−l − 1

2 + iσ)m+1

+ (m− l)ψ0

(−l + 2iα1)m(−l − 1
2 − iδ)m(−l − 1

2 + iσ)m+1

)}
(54)

where (a)n = 0(a + n)/0(a) is the standard Pochhammer symbol. So one can see that
the advantage of solving this model with a Laplace transform approach is that we have
incorporated the boundary condition (6) easily and also effected considerable simplification.
It is possible to further simplify this result and re-express it in terms of a generalized
hypergeometric function by explicitly performing them and l summations. By reversing
the order of them-l summations, into two infinite summations overq = m− l andl, a clean
factorization of the summand gamma functions into aq-dependence and al-dependence
occurs, thus allowing both summations to be done. This yields the final result given in
equation (22). From our analysis it is clear why this class of functions should arise in
the travelling wave or two beam problem—on the one hand we have a pair of quadratic
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coefficients in the first-order difference equation (51), and equivalently in real-space we have
a fourth-order ordinary differential equation—both leading to the hyper-Bessel function0f3.

6. The 0f3 hyper-Bessel functions

In this half of our work we discuss the more mathematical properties of the hyper-Bessel
functions that are motivated by the physical applications just discussed, and in addition
we describe some of a general nature by way of a background to these functions as they
are not so commonly used or widely known. They have been discussed for some time,
since the times of Barnes, as a special case of generalized hypergeometric functions or
their generalization to the MeijerG-functions, but it is only since the work of Delerue
have the specific incarnations been investigated in the form we have employed. In a series
of papers Delerue (1949, 1950a, b, 1953a, b) investigated the natural generalizations of the
Bessel functionsJν(x), Iν(x) etc to the functions0Fn for arbitrary integern. In these works
many properties are derived—the generating functions, the addition formulae, recurrence
relations, the ordinary differential equations, Poisson-type integral representations, Sonine-
type integral representations, and Weber integrals. The succeeding work has been performed
by the Bulgarian School around Dimovski and Kiryakova where these functions have been
approached using fractional calculus. For instance results for Poisson representations of
hyper-Bessel functions have been found using fractional integrals. The work of many papers
(see Dimovski and Kiryakova 1986, 1987 and Kiryakova 1987a, b) has been summarized
in the recent monograph Kiryakova (1994). To simplify notational matters we consider the
function

0f3(; ρ1, ρ2, ρ3; z) ≡ 0f3(; a, b, c; z) (55)

and will use the two forms interchangeably throughout the paper.

6.1. Connection relations

This function satisfies a fourth-order ordinary differential equation

D

3∏
i=1

(D + ρi − 1)U − zU = 0 (56)

whereD ≡ zd/dz, which has a regular singular point atz = 0 and an irregular singular
point at z = ∞. The fundamental system of four linearly independent solutions in the
neighbourhood ofz = 0 including the one given above are the following

U1(a, b, c; z) = 0f3(; a, b, c; z)
U2(a, b, c; z) = z1−a

0f3(; 2− a, 1+ b − a, 1+ c − a; z)
U3(a, b, c; z) = z1−b

0f3(; 2− b, 1+ a − b, 1+ c − b; z)
U4(a, b, c; z) = z1−c

0f3(; 2− c, 1+ a − c, 1+ b − c; z).

(57)

The Wronskian for this fundamental set is

W [U1, U2, U3, U4] =
∏3
i=1 sinπρi

∏
16i<j63 sinπ(ρi − ρj )

π6z3+∑i ρi
. (58)

For our purposes this set of four will always be linearly independent, because our
parameters do not lead to degeneracy, and so we do not have to consider logarithmic
solutions. There are also four linearly independent solutions of the fundamental system in
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the neighbourhood ofz = ∞ and we define these according to their asymptotic behaviour
in the following way

E(a, b, c; z) ∼ 2−5/2π−3/2zθ/4e+4z1/4

D(a, b, c; z) ∼ 2−5/2π−3/2zθ/4e−4z1/4∓iπθ

C(a, b, c; z) ∼ 2−5/2π−3/2zθ/4 cos
(

4z1/4+ π
2
θ
)

S(a, b, c; z) ∼ 2−5/2π−3/2zθ/4 sin
(

4z1/4+ π
2
θ
)
.

(59)

The ∓ sign in the phase ofD is the manifestation of the Stokes phenomena across the
positive real axis, which is the ray along which the solutionD has maximal subdominance.
One notes that all four of this fundamental set have an essential singularity atz = ∞. Then
the exact connection equations between the two sets of solutions are the following

U1 = E + 2C +D
U2 = E + 2 cos(2πa)C − 2 sin(2πa)S + e∓4π iaD

U3 = E + 2 cos(2πb)C − 2 sin(2πb)S + e∓4π ibD

U4 = E + 2 cos(2πc)C − 2 sin(2πc)S + e∓4π icD.

(60)

The eightS-amplitudes of the exact solution, equation (37), can be divided into two sets
when viewed as solutions of the defining differential equation of the hyper-Bessel function.
From the first set{S+00, S

−
00, S

+
10, S

−
10} a fundamental system of solutions to the ordinary

differential equation (ODE) witha = 2+ 2iα0, b = 3
2 + iδ, c = 3

2 + iσ can be constructed

S+00→ s01 ≡ 0f3(; 2+ 2iα0,
3
2 + iδ, 3

2 + iσ ;β4)

S−00→ s02 ≡ β−4−8iα0
0f3(;−2iα0,

1
2 − iδ, 1

2 − iσ ;β4)

S+10→ s03 ≡ β−2−4iδ
0f3(; 1+ 2iα1,

1
2 − iδ, 3

2 + iσ ;β4)

S−10→ s04 ≡ β−2−4iσ
0f3(; 1− 2iα1,

3
2 + iδ, 1

2 − iσ ;β4).

(61)

From the second set{S+11, S
−
11, S

+
01, S

−
01} a fundamental system of solutions to the ODE with

a = 2+ 2iα1, b = 3
2 − iδ, c = 3

2 + iσ can be constructed

S+11→ s11 ≡ 0f3(; 2+ 2iα1,
3
2 − iδ, 3

2 + iσ ;β4)

S−11→ s12 ≡ β−4−8iα1
0f3(;−2iα1,

1
2 + iδ, 1

2 − iσ ;β4)

S+01→ s13 ≡ β−2+4iδ
0f3(; 1+ 2iα0,

1
2 + iδ, 3

2 + iσ ;β4)

S−01→ s14 ≡ β−2−4iσ
0f3(; 1− 2iα0,

3
2 − iδ, 1

2 − iσ ;β4).

(62)

Then the connection with the fundamental system having asymptotic growthE0, evanescent
decayD0, and cosineC0 and sineS0 oscillatory behaviours is, in the case of the first set,

s01 = E0+ 2C0+D0

s02 = E0+ 2 cosh(4πα0)C0− 2i sinh(4πα0)S0+ e±8πα0D0

s03 = E0− 2 cosh(2πδ)C0+ 2i sinh(2πδ)S0+ e±4πδD0

s04 = E0− 2 cosh(2πσ)C0+ 2i sinh(2πσ)S0+ e±4πσD0

(63)
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and in the case of the second set,

s11 = E1+ 2C1+D1

s12 = E1+ 2 cosh(4πα1)C1− 2i sinh(4πα1)S1+ e±8πα1D1

s13 = E1− 2 cosh(2πδ)C1− 2i sinh(2πδ)S1+ e∓4πδD1

s14 = E1− 2 cosh(2πσ)C1+ 2i sinh(2πσ)S1+ e±4πσD1.

(64)

Using equations (63) and (64) it is then straightforward to show that all products of the
form E0E1 in the numerators and denominators of a reflection or transmission coefficient
combine to cancel exactly.

6.2. Asymptotic regime

In the large coupling regime one might require accurate evaluation of the hyper-Bessel
functions beyond just the lowest order and recursive procedures have been found to generate
higher-order terms. The leading-order terms were first found by Wrinch (1921a, b) and later
in Wright (1935,1940), Braaksma (1963) for the specific hyper-Bessel functionn = 3 and
the general case0fn, and the specific results were rederived in Heading and Whipple (1952).
The extension to higher-order terms had been completed by Wrinch (1923), Riney (1956,
1958), and Wright (1958), and is laid out in the works by Luke (1969) and Paris and Wood
(1986). The full asymptotic expansion is (after dropping the exponentially damped terms)

0f3(; a, b, c; z) ∼ zθ/4

2(2π)3/2

{
e4z1/4

∑
j=0

z−j/4Nj + 2
∑
j=0

z−j/4Nj cos[4z1/4+ π
2 (θ − j)]

}
(65)

whereθ ≡ 3
2 − a − b − c and the coefficientsNj are functions ofa, b, andc. The lowest

order hasN0 = 1 while the next two orders can be found in Witte (1996).

7. Uniform semiclassical approximation

Motivated by interest in semiclassical approximations to the exact solution we derive here
the asymptotic expression for the hyper-Bessel function for large parameters and arguments.
We require as our starting point an integral representation for the hyper-Bessel function,
but neither the Poisson–Dimovski transformation equation nor the generalized Poisson-type
integral representation quoted in Kiryakova (1994) are suitable. A simple multidimensional
representation for the hyper-Bessel function can be found by utilizing the Laplace formula
for the gamma function

1

0(z)
= 1

2π

∫ +∞
−∞

du ea+iu(a + iu)−z (66)

which is valid for any real positivea and Re(z) > 0. By expressing the denominator gamma
functions in the series definition in this way, and interchanging the order of summation and
integrations the sum can be performed, yielding

0f3(; ρ; z) = 1

(2π)3

∫ ∫ ∫
R3

du1 du2 du3

× exp

{ 3∑
j=1

[aj + iuj − ρj ln(aj + iuj )] + z
3∏

j=1

(aj + iuj )
−1

}
. (67)
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The significance of this representation is that it is explicitly symmetrical in the parameter
argumentsρj .

We choose to express the hyper-Bessel function in terms of new scaled variables, that
is we takez = β4 and scale the variables with a large real positive numberλ, thus

β = λb ρj = λpj + rj aj = λcj uj = λvj (68)

with b, pj , rj , cj all of order O(1). Applying this to the integral representation (67) we
arrive at a three-dimensional stationary-phase integral

0f3(; ρ;β4) = (2π)−3λ3−∑ ρj i−
∑
ρj

∫
R3

d3vg(v)eiλf (v) (69)

with

f (v) =
3∑

j=1

[Xj + ipj ln(Xj )] + b4
3∏

j=1

X−1
j g(v) =

3∏
j=1

X
−rj
j Xj = vj − icj . (70)

To ensure convergence we have to require Re(pj ) > 0, whereas in our final application
these parameters will be completely imaginary. We will proceed making all the necessary
assumptions in order to apply certain theorems, and will appeal to analytic continuation
arguments to make our specific applications. Using the standard theory to leading order of
the saddle-point method, see Wong (1989) and Connor (1973a). The contribution from one
critical point is∫

Rn
dnvg(v)eiλf (v) ∼

(
2π i

λ

)n/2
(detA0)

−1/2g(v0)e
iλf (v0) (71)

wherev0 is the critical point andA0 is the Hessian matrix off at the critical point. We
have chosen this particular manifestation of the saddle-point method because our critical
point, and the Hessian elements will in general be complex, and not real. This expression
only applies for isolated critical points, and we will have need to consider a generalization
of this later. The critical points,t0, are given by the solutions to the following quartic

q(t) = t4−
3∏

j=1

(1+ Rj t) (72)

wherepj/b = iRj and theRj are purely real, and whereX0
j = bRj + b/t0. The Hessian

matrix is given by

A0ij ≡
(

∂2f

∂Xi∂Xj

)
0

= b−1t0{δij d−1
j + d−1

i d−1
j }0 (73)

wheredj ≡ 1+ Rj t . It is easy to establish that the determinant of this is

|A0| = b−3t−1
0

[
1+

3∑
j=1

d−1
j

]
0

= b−3t−4
0

dq

dt

∣∣∣∣
0

. (74)

What is clear from these expressions is that the Hessian can become degenerate when
1+∑j d

−1
j = 0, and the occurrence of this is directly related to that of multiple roots to

the quartic, i.e. that some critical points can coalesce.
While the roots of the quartic are distinct the leading-order term for the expansion is

(θ ≡ 3
2 −

∑
j ρj )

0f3(; ρ;β4) ∼
∑
t=t0
(2π)−3/2

(
β i

t

)θ 3∏
j=1

d
1/2−ρj
j

[
1+

3∑
j=1

d−1
j

]−1/2

exp

{
4iβ/t + iβ

3∑
j=1

Rj

}
(75)
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with the sum over all critical points. Care has to be exercised when using this equation
and its generalization with regard to the branches chosen because of the algebraic branch
points. The arguments oft, dj , 1+∑j d

−1
j are decided by restricting 06 arg(t) < 2π , i.e.

we cut thet-plane along the positive real axis.
However, because two critical points can coalesce the above asymptotic expansion will

fail in the region of the classical turning points. There exist uniform asymptotic expansions
to cover precisely this case and which are valid everywhere in theσ̂ − δ̂ plane (Wong 1989,
Connor 1973a). In this generalization the contributions due to the two coalescing critical
points atv+, v− → v0 becomes∫
Rn

dnv g(v)eiλf (v) ∼
(

2π i

λ

)n/2{
B(−)(−λ2/3ζ )

g(v+)
(detA+)1/2

eiλf (v+)

+B(+)(−λ2/3ζ )
g(v−)

(detA−)1/2
eiλf (v−)

}
(76)

where now
4
3ζ

3/2 ≡ f (v−)− f (v+) (77)

and

B(±)(−z) ≡ π1/2e∓i( 2
3z

3/2− 1
4π)
{
z1/4Ai(−z)± iz−1/4Ai ′(−z)} (78)

with Ai(z) the standard Airy function. It should be noted that we label the coalescing roots
∓ in the sense that whenζ is real then it is also positive. The above form goes over
smoothly to the well separated critical point case as

(1) B(±)(−z)→ 1 asz→+∞,
(2) B(+)(−z)→ 1 as−z→ e−π i∞, and
(3) B(−)(−z)→ 1 as−z→ e+π i∞.

These cases cover all the eventualities, because when the two roots are real then−λ2/3ζ

is real and negative, and when the roots are a complex conjugate pair then with a suitable
choice of branch this argument is real and positive,

−λ2/3ζ = +( 3
2λ|Im (f (v−))|)2/3. (79)

When the points coalesceζ → 0 the two terms combine to give a convergent result
even though separately they diverge. The leading-order approximation of the hyper-Bessel
function with coalescing critical points has the same form as equation (75), except there are
additional factors ofB(±) attached for each pair of coalescing points.

To further investigate the possibility of degeneracy in the saddle-point method we
specialize to the particular form of the hyper-Bessel functions arising in our application
and parametrize the coefficientsRj in the following way

R1 = δ̂ = δ

β
R2 = σ̂ = σ

β
R3 = R1+ R2. (80)

After forming the discriminant of the reducing cubic to the quartic (72) following Cajori
(1943)

D = 1
256(σ̂

2− δ̂2− 4)(σ̂ 2− δ̂2+ 4)(σ̂ 2δ̂2+ 4)2 (81)

it is possible to show that there are only three possible configurations of the roots:
(1) D > 0 and there are two pairs of distinct real roots in a region ofσ̂ − δ̂ space

outside of the four hyperbolaêσ 2 − δ̂2 = ±4 and therefore applies when the effective
coupling vanishes, as say at large distancesx,
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(2)D < 0 and there are two real distinct roots and a complex conjugate pair in a region
in σ̂ − δ̂ space inside of the four hyperbolaeσ̂ 2− δ̂2 = ±4.

(3) D = 0 and one pair of the roots are equal, the others are distinct.
When degeneracy occurs atD = 0 it is clear that this is precisely the condition for

a classical turning pointα0α1 = β2. Here theβ parameter can be the position-dependent
quantityβe−x/4.

We see that the roots are grouped in pairs and we will denote a pair byt, t̄ . While
there exists a number of paths to the explicit solution of a general quartic, via a reducing
cubic equation, we shall see that our particular quartic has symmetries which yield simple
explicit solutions and avoids the construction of a cubic equation. To begin with we will
require the solutions of four related quartics

A: whereδ̂, σ̂ have the generic sign;
B: whereδ̂ has the generic sign and̂σ →−σ̂ ;
C: whereδ̂→−δ̂ and σ̂ has the generic sign;
D: where bothδ̂→−δ̂ and σ̂ →−σ̂ .
First there are the obvious symmetriestC = −tB , dCj = dBj , tD = −tA, dDj = dAj , ∀j .

In addition, there are homographic transformations which we state without proof

tA = tC

1− δ̂tC tB = tD

1− δ̂tD tA = tB

1− σ̂ tB

tC = tD

1− σ̂ tD tA = tD

1− (δ̂ + σ̂ )tD tC = tB

1+ (δ̂ − σ̂ )tB
(82)

and if one combines the sign symmetry with the appropriate homographic transformation
then one gets a relation between the pair of roots to the same quartic, namely

t̄A = −tA
1+ (δ̂ + σ̂ )tA t̄B = −tB

1+ (δ̂ − σ̂ )tB

t̄C = −tC
1+ (−δ̂ + σ̂ )tC t̄D = −tD

1+ (−δ̂ − σ̂ )tD .
(83)

We will need to label specific roots liketν and its pairtν̄ in order to keep track of a given root
and where we sometimes use a superscriptQ = A,B,C,D to indicate which quartic we are
referring to. In addition we can form useful combinations which have nice transformational
properties, such as

d
Q

2ν

(t
Q
ν )2

d
Q

2ν̄

(t
Q
ν̄ )

2
= 1

d
Q

1ν

(t
Q
ν )2

d
Q

1ν̄

(t
Q
ν̄ )

2
= 1

d
Q

2ν

(t
Q
ν )2
= d

Q′
2ν

(t
Q′
ν )2

for Q,Q′ = {A,B}, {C,D}. (84)

Finally we relate all the derived quantities of a pair of roots for quartic caseA

t̄A = − t
A

dA3
d̄A1 =

dA2

dA3
d̄A2 =

dA1

dA3
d̄A3 =

1

dA3
. (85)

So in summary we relate any quantity for quarticsB,C,D to that of quarticA and any
quantity of one member of a pair of roots to quarticA to the other member.

There are further consequences of the above transformations which will ultimately lead
to explicit solutions, but to start with we need to motivate the forms of our solutions. All
discussion now refers to quarticA. We take theD < 0 case first. If the pair of rootst, t̄
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are complex conjugate then from equation (85)|d3| = |d̄3| = 1, so d3 is purely a phase
factor. From this|d1| = |d2| = |t |2. So we can setd3 = e2iχ and thus solve fort

t = i
sinχ

α̂0
eiχ (86)

and t̄ is given byχ →−χ . Usingd1+ d2 = d3+1 andd1 = d∗2d3 one can solve ford1, d2

in terms ofχ and α̂0. All of these combined identically satisfy the quartic so in order to
solve forχ we introduce a relation involvinĝα1. This yields

sinχ = α̂0

[
1
2

√
4+ σ̂ 2δ̂2− 1

2 σ̂ δ̂

]1/2

. (87)

The positive sign forχ givest , while the negative sign̄t , so we restrict 06 χ 6 π/2. This
gives the simple expressions ford1, d2

d1 = eiχ

α̂0
[α̂0 cosχ − iα̂1 sinχ ] = σ̂ + δ̂e2iχ

σ̂ + δ̂
d2 = eiχ

α̂0
[α̂0 cosχ + iα̂1 sinχ ] = δ̂ + σ̂e2iχ

δ̂ + σ̂ .

(88)

and

1+
∑
j

d−1
j = 2e−iχ cosχ

sin4 χ
[α̂4

0 + sin4 χ ]. (89)

The conjugate pair merge atD = 0 whenχ = π/2. Having found the conjugate roots of a
quartic the remaining real pairt1, t2 are given by

t1, t2 = α̂0

sin2 χ
[α̂2

0 ±
√
α̂4

0 + sin2 χ ]. (90)

So thatt1 > 0 andt2 < 0 (arg(t) = +π ). For t1

d3 =
 α̂

2
0 +

√
α̂4

0 + sin2 χ

sinχ


2

> 0

d1 =

[
−α̂0α̂1+

√
α̂4

0 + sin2 χ

] [
α̂2

0 +
√
α̂4

0 + sin2 χ

]
sin2 χ

d2 =

[
α̂0α̂1+

√
α̂4

0 + sin2 χ

] [
α̂2

0 +
√
α̂4

0 + sin2 χ

]
sin2 χ

1+
∑
j

d−1
j =

2(α̂4
0 + sin4 χ)

√
α̂4

0 + sin2 χ

α̂4
0

[
α̂2

0 +
√
α̂4

0 + sin2 χ

]

(91)

and for t2 one uses the above equations with the sign of the square root radical reversed.
It should be noted thatdj , 1+∑j d

−1
j for the real pairt1, t2, are always positive in this

region.
Now we seek to extend the above analysis to the regionD > 0. Let us denote the four

roots t, t̄ , t1, t2 where we demand continuity with their namesakes acrossD = 0. Now the
product of all roots is−1 so either one or three roots are negative . If we consider the case
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of only one negative root then both members of the other pair must be positive, but this
contradicts the first equation in equation (85). So three of the roots must be negative and
it will turn out that botht, t̄ are negative. In the other pairt1, t2 we can taket1 as positive
and t2 negative. It is easy to see that for this root alldj are positive, and consequently all
thedj for its partner are positive. So whatever signD takes thedj for this pair are positive.
So for the roott1 we can setd3 = e2χ (we use the same symbolχ again, in this context)
and again solve fort1

t1 = sinhχ

α̂0
eχ (92)

and parallel to the analysis of the previous paragraph we have

sinhχ = α̂0

[
1
2

√
4+ σ̂ 2δ̂2+ 1

2 σ̂ δ̂

]1/2

. (93)

The positive sign forχ givest1, while the negative signt2, so we restrict 06 χ <∞. This
gives the similar expressions ford1, d2

d1 = eχ

α̂0
[α̂0 coshχ − α̂1 sinhχ ] = σ̂ + δ̂e2χ

σ̂ + δ̂
d2 = eχ

α̂0
[α̂0 coshχ + α̂1 sinhχ ] = δ̂ + σ̂e2χ

δ̂ + σ̂

(94)

and

1+
∑
j

d−1
j = 2e−χ

coshχ

sinh4 χ
[α̂4

0 + sinh4 χ ]. (95)

For this pair of rootsdj , 1+∑j d
−1
j are always positive in this region. Having found the

above pair of roots the remaining real pairt, t̄ are given by

t, t̄ = α̂0

sinh2 χ

[
−α̂2

0 ∓
√
α̂4

0 − sinh2 χ

]
. (96)

For t

d3 = −
−α̂

2
0 −

√
α̂4

0 − sinh2 χ

sinhχ


2

< 0

d1 =

[
−α̂0α̂1+

√
α̂4

0 − sinh2 χ

] [
−α̂2

0 −
√
α̂4

0 − sinh2 χ

]
sinh2 χ

d2 =

[
α̂0α̂1+

√
α̂4

0 − sinh2 χ

] [
−α̂2

0 −
√
α̂4

0 − sinh2 χ

]
sinh2 χ

1+
∑
j

d−1
j =

2(α̂4
0 + sinh4 χ)

√
α̂4

0 − sinh2 χ

α̂4
0

[
α̂2

0 +
√
α̂4

0 − sinh2 χ

]

(97)

and for t̄ , again one uses the above expressions with the sign of the square root radical
reversed. The conjugate pair merge atD = 0 when sinhχ = α̂2

0.
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Finally in the degenerate caseD = 0 the quartic roots simplify to

t, t̄ = − 1

α̂0

t1,2 = α̂0

[
α̂2

0 ±
√
α̂4

0 + 1

]
.

(98)

Having found explicit forms for the critical points and all the derived parameters
appearing in the semiclassical approximation for distinct critical points, equation (75), we
need to find equivalent results for the coalescing critical point situation. Expressing the
argument of the Airy functions, equation (79), in terms of the quartic roots we have

−λ2/3ζ =
{
−[βh(t, t̄)]2/3 real roots

+[β|Im (h(t, t̄))|]2/3 complex conjugate roots
(99)

where the explicit form for the functionh is

h = 3

2

−4

√
α̂4

0 − sinh2 χ

α̂0
+ α̂0 ln

 α̂2
0 +

√
α̂4

0 − sinh2 χ

α̂2
0 −

√
α̂4

0 − sinh2 χ


+α̂1 ln

 α̂0α̂1+
√
α̂4

0 − sinh2 χ

α̂0α̂1−
√
α̂4

0 − sinh2 χ

 (100)

in the case of real roots and

Im (h) = 3

{
2α̂0 cotχ + α̂0(χ − π/2)− α̂1 tan−1

(
α̂0

α̂1
cotχ

)}
(101)

for complex conjugate roots. It fulfils the following symmetriesh = hA = hB , hC = −hB ,
hD = −hA.

Collecting the uniform semiclassical expressions for all the component hyper-Bessel
functions together into the transmission coefficientT0 (for the others see Witte (1996)) one
has the following intermediate result, after much simplification

T0 ∼ (2π)3/2β−1/2−4iα0e−4iα0

0[−2iα0,
1
2 − iδ, 1

2 − iσ ]

{∑
µ

B(µ)e4iβ/tµ

[
1+

∑
j

d−1
jµ

]−1/2

Z0(µ)

}

÷
{∑
µ,µ′
B(µ)B(µ′)e4iβ[1/tµ+1/tµ′ ]

[
1+

∑
j

d−1
jµ

]−1/2[
1+

∑
j

d−1
jµ′

]−1/2

×
[

1− 1

d2µ

(
tµ

i

)2

d2µ′

(
i

tµ′

)2
]
Yd(µ,µ

′)
}

(102)

where the important phase functions are defined

Yd =
(

i

tµ

)1/2 1

(d3µ)1/2

(
i

tµ′

)1/2(
d1µ′

d2µ′

)1/2
[(

i

tµ

)2

d2µ

(
tµ′

i

)2 1

d1µ′d3µ′

]iδ

×
[(

i

tµ

)2

d1µ

(
i

tµ′

)2

d1µ′

]iσ

Z0 =
(

i

tµ

)1/2(
d1µ

d2µ

)1/2
[(

tµ

i

)2 1

d1µd3µ

]iδ [(
i

tµ

)2

d1µ

]iσ

.

(103)
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TheB(µ) functions are a shorthand forB(µ)(−[βh]3/2) which is defined by equation (78) and
its argumenth by equations (100) and (101). Thetµ are the roots of the quartic (72) with
parametersRj , equation (80), andµ labelling the different ones. By convention we take
µ = +,− to indicate the roots which are complex conjugates in the classically forbidden
region, whileµ = 1, 2 denote the roots which are real for all parameters. By definition
B(1,2) = 1 as these roots do not coalesce. Explicit expressions for the roots can be found
from equations (86), (87) and (90) or equations (92), (93) and (96). The derived functions
djµ of the root tµ are defined following equation (73) again with equation (80) and their
final explicit forms are given in equations (91) and (97). We wish to emphasize here that the
argument of the complex rootstµ and consequently thedj must be correctly chosen to yield
the true result and certain algebraic relations which confuse the arguments of the different
roots should not be used. Several observations can be made of the above expressions. First
those terms in the sum over the roots withµ = µ′ vanish which means that the product of
two exponentially dominant terms (Re(tµ) > 0) is absent. So the exponentially large factors
cancel out of the resulting amplitudes as in the large coupling case. The above amplitudes
reduce to the large coupling case, namely equations (28), (30) and (32) whenδ̂, σ̂ → 0.

In the final step of the analysis this intermediate expression for the transmission
coefficient|T0| is further reduced and simplified by introducing the explicit quartic solutions
and this final result is displayed as equation (45) in section 4.4.

8. Conclusions

In this work we have derived an exact solution to the reflection and diffraction of atomic de
Broglie waves by a travelling evanescent laser wave, the ‘two-beam’ case. We have found
that the wavefields and the elements of the non-adiabatic transition matrix and the tunnelling
loss matrix are given exactly by a specific case of a hyper-Bessel function,0f3, which are
natural generalizations of the traditional modified Bessel function. We have given a number
of exact representations of these hyper-Bessel functions, some already known and others
that are new, that enable a practical or numerical analysis to be employed. Furthermore,
we have investigated in detail all of the asymptotic and limiting regimes whereby these
functions reduce to simpler and well known special functions, using again some known
results and establishing some new ones concerning the uniform asymptotic approximation
for large parameters and arguments. In particular we have found expressions for the regimes
of:
• weak and strong coupling between the atoms and laser fields but the detuning and

kinetic energy are moderate;
• the detuning is exactly zero, and other parameters are arbitrary; and
• strong coupling between the atoms and laser fields and large detuning and kinetic

energy, where the semiclassical approximation is approached, and which is uniform with
respect to the location of any classical turning points.

In real experimental situations the semiclassical is usually quite accurate and would be
employed because of the relative simplicity of the results, namely the use of elementary
and Airy functions, rather than the exact expressions.

The comparison of the exact solution and the uniform semiclassical approximation with
approximation schemes employing adiabatic assumptions and treating these with a WKB
method reveals the weakness of this commonly used approach, especially for small detunings
or large couplings. Similarly perturbation expansions in the couplings are revealed to be
quite unsuitable and extremely inefficient in the light of our analysis. This model has little
to say about the Landau–Zener theory as there are no level crossings in the two-beam case.
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symboliqueá n variablesC. R. Acad. Sci., Paris230 912–14
——1950b Note sur les propiét́es des fonctions hyperbesséliennesC. R. Acad. Sci., Paris230 1333–5
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